A Practical Guide to Building Agents
A Practical Guide to Building Agents - Summary
A_Practical_Guide_to_Building_Agents/
│
├── 01_What_is_an_Agent/
│ ├── Definition: Systems that independently accomplish tasks
│ ├── Core_Characteristics/
│ │ ├── Uses LLM to manage workflow execution
│ │ └── Has access to tools with defined guardrails
│ └── Not_Agents: Simple chatbots, single-turn LLMs, classifiers
│
├── 02_When_to_Build_an_Agent/
│ ├── Use_Cases/
│ │ ├── Complex decision-making (refund approvals)
│ │ ├── Difficult-to-maintain rules (vendor reviews)
│ │ └── Heavy unstructured data (insurance claims)
│ └── Validation: Must resist traditional automation
│
├── 03_Agent_Design_Foundations/
│ ├── Core_Components/
│ │ ├── Model: LLM for reasoning and decisions
│ │ ├── Tools: External functions/APIs
│ │ └── Instructions: Explicit guidelines and guardrails
│ │
│ ├── Model_Selection/
│ │ ├── Start with most capable model
│ │ ├── Establish performance baseline with evals
│ │ └── Optimize: Replace with smaller models where possible
│ │
│ ├── Tool_Types/
│ │ ├── Data: Retrieve context (query DBs, read PDFs, search web)
│ │ ├── Action: Take actions (send emails, update CRM)
│ │ └── Orchestration: Agents as tools for other agents
│ │
│ └── Instructions_Best_Practices/
│ ├── Use existing documents (SOPs, policies)
│ ├── Break down tasks into clear steps
│ ├── Define clear actions for each step
│ └── Capture edge cases
│
├── 04_Orchestration/
│ ├── Single_Agent_Systems/
│ │ ├── One agent with multiple tools
│ │ ├── Loop until exit condition (tool call, output, error, max turns)
│ │ ├── Use prompt templates with variables
│ │ └── When_to_Split: Complex logic or tool overload
│ │
│ └── Multi_Agent_Systems/
│ ├── Manager_Pattern/
│ │ ├── Central manager orchestrates specialized agents
│ │ ├── Agents as tools (tool calls)
│ │ ├── Manager maintains control and context
│ │ └── Use_Case: Single agent controls workflow and user access
│ │
│ └── Decentralized_Pattern/
│ ├── Agents hand off to each other (peers)
│ ├── One-way transfer with conversation state
│ ├── No central controller needed
│ └── Use_Case: Specialized agents fully take over tasks
│
├── 05_Guardrails/
│ ├── Philosophy: Layered defense mechanism
│ │
│ ├── Types/
│ │ ├── Relevance_Classifier: Keep responses on-topic
│ │ ├── Safety_Classifier: Detect jailbreaks/prompt injections
│ │ ├── PII_Filter: Prevent exposure of personal data
│ │ ├── Moderation: Flag harmful content
│ │ ├── Tool_Safeguards: Risk ratings (low/medium/high)
│ │ ├── Rules_Based: Blocklists, input limits, regex
│ │ └── Output_Validation: Brand alignment checks
│ │
│ ├── Building_Strategy/
│ │ ├── 1. Focus on data privacy and content safety
│ │ ├── 2. Add guardrails based on real failures
│ │ └── 3. Optimize for security AND user experience
│ │
│ └── Human_Intervention/
│ ├── Trigger_1: Exceeding failure thresholds
│ └── Trigger_2: High-risk actions (refunds, payments)
│
└── 06_Key_Principles/
├── Start simple: Single agent first
├── Iterate: Add complexity only when needed
├── Validate: Test with real users
├── Monitor: Track failures and edge cases
└── Evolve: Grow capabilities over time
Key Takeaways
Agent = Model + Tools + Instructions + Guardrails
- Start simple: Begin with a single agent and well-defined tools
- Orchestration patterns: Choose based on complexity (single → manager → decentralized)
- Guardrails are critical: Layer multiple types for robust protection
- Human-in-the-loop: Essential for high-risk actions and early deployment
- Incremental approach: Small deployments → validation → scaling